Reliable numerical methods for polynomial matrix triangularization
نویسندگان
چکیده
منابع مشابه
Reliable numerical methods for polynomial matrix triangularization
Numerical procedures are proposed for triangularizing polynomial matrices over the eld of polynomial fractions and over the ring of polynomials. They are based on two standard polynomial techniques: Sylvester matrices and interpolation. In contrast to other triangularization methods, the algorithms described in this paper only rely on well-worked numerically reliable tools. They can also be use...
متن کاملApproximate Joint Matrix Triangularization
We consider the problem of approximate joint triangularization of a set of noisy jointly diagonalizable real matrices. Approximate joint triangularizers are commonly used in the estimation of the joint eigenstructure of a set of matrices, with applications in signal processing, linear algebra, and tensor decomposition. By assuming the input matrices to be perturbations of noise-free, simultaneo...
متن کاملPolynomial Optimization Methods for Matrix Factorization
Matrix factorization is a core technique in many machine learning problems, yet also presents a nonconvex and often difficult-to-optimize problem. In this paper we present an approach based upon polynomial optimization techniques that both improves the convergence time of matrix factorization algorithms and helps them escape from local optima. Our method is based on the realization that given a...
متن کاملTowards Computing a Gröbner Basis of a Polynomial Ideal over a Field by Using Matrix Triangularization
We give first results of our investigation of the connection between Gröbner bases computation and Gaussian elimination. We show that for every input set F of polynomials a matrix of shifts of those polynomials exists such that by triangularizing this matrix we obtain a Gröbner basis of F .
متن کاملBlock Toeplitz Methods in Polynomial Matrix Computations
Some block Toeplitz methods applied to polynomial matrices are reviewed. We focus on the computation of the structure (rank, null-space, infinite and finite structures) of an arbitrary rectangular polynomial matrix. We also introduce some applications of this structural information in control theory. All the methods outlined here are based on the computation of the null-spaces of suitable block...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 1999
ISSN: 0018-9286
DOI: 10.1109/9.751344